

6. Tennis Ball Tower

Katarína Revická

Co-funded by the
Erasmus+ Programme of the European Union

Assignment

Build a tower by stacking tennis balls using three balls per layer and a single ball on top. Investigate the structural limits and the stability of such a tower. How does the situation change when more than three balls per each layer and a suitable number of balls on the top layer are used?

Key word: FRICTION

Analysis of assignment

- Tower of tennis balls with three balls in each level with single ball on the top
- Stability - stands still?
- How many levels can be built?
- How many balls may be in each layer?
(inspiration in photos)

What is a tennis ball?

Tennis balls - standardized

- mass: 56-59,4 g ;
- diameter: 6,541-6,858 cm ;
- friction coefficient (according to use of the ball):

0,49-0,7 (hard court) - 0,6 (grass) - 0,8 (clay) ;

- manufacturer quality - price (different features using different brands?)
- new vs. used ball
(change in mass, friction coefficient, elasticity... What could be important for our experiments? Investigate!)
- White dent around the ball - affects stability?

Sliding Friction

Friction

- There is a distinction between the types of friction:
- Sliding/rolling
- Static/ dynamic
- Sliding friction is larger than rolling
- Static friction is larger than kinetic
- Friction force is defined as dot product of normal force and corresponding friction coefficient

Normal Force (F_{N})

$$
F_{K}=\mu_{K} m g
$$

Comparison of different friction

- Bottom tower (yellow):

What affects the stability of tower?

- Stability - amount of work needed to change the stable position of a system (equilibrium) into an unstable one

Could it be defined in a different way?

- Stability depends on the position of centre of gravity
- The tower remains in a stable position as long as the centre of gravity is in rest (1st Newton's Law)
- When the tower is falling apart, the balls not only slide, but they perform rotary motion caused by torque
- The tower holds together by friction (it compensates the torques!)

Analysis of forces - single ball on a pad

T - centre of mass
FG_{G} - gravitational force on the ball
F_{r} - force of reaction of the pad (3rd Newton's law)
W - weight

Simplified model:

Analysis of forces -

3 stacked balls in 2D

- $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}$ - centres of gravity of ball 1, 2, 3
- Fg_{G} - gravitational forces (red)
- $\mathrm{F}_{1,2}$ - resolution of the gravitational force of the ball on the top
- W (indexed) - weight (tiaž)
- Fr - reaction force of the pad on the balls on the bottom (yellow)
- $\mathrm{F}_{1,2 \mathrm{t}^{\prime} \text { - }}$ decomposition of weight

Analysis of forces - 4 stacked balls in 3D top view

- $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}, \mathrm{~T}_{4}$ - centres of gravity of ball 1, 2, 3, 4
- FG_{G} - gravitational force of the topmost ball
- $\mathrm{F}_{1}-\mathrm{F}_{3}$ - decomposition of FG into the directions of $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}$
- Very difficult to draw correctly

$$
\begin{aligned}
& \operatorname{tg} 60^{\circ}=\frac{v}{r} \\
& v=r \cdot \operatorname{tg} 60^{\circ} \\
& v=\sqrt{3} \cdot r
\end{aligned}
$$

Analytical approach to the model of the

 tower- We need to know the distance of the radii (v) to draw the balls into Geogebra - better visualisation model here: https://www.geogebra.org/3d/bhnrwmsj
- Trigonometry

Analytical approach to the model of the tower

- Getting v from the previous slide is not enough (it only decides about the coordinates in xy plane of the first floor of the tower)
- How to find the coordinates of the third ball set on the top of the first floor?
- The x coordinate will be 0 , y will be $1 / 3$ of the v that we already know
- The z coordinate will be the $\mathrm{r}+\mathrm{y}$ coordinate (due to symmetry)

Analytic approach to the problem of tower

- Once we have the coordinates, we can clearly see the „pyramid" of forces, where the side is looking like this:
- The x distance is the radial distance - the weight of the top ball decomposes into three equal parts with the ratio x
- Model here:
https://www.geogebr
a.org/3d/jzkxczsf

The centre of gravity of system

$$
\begin{aligned}
& A=(3,3 ; 0 ; 0) \\
& B=(-3,3 ; 0 ; 0) \\
& C=(0, \sqrt{3}, 3,3 ; 0) \\
& D=\left(0, \frac{\sqrt{3}}{3} \cdot 3,3 ; 1,58 \cdot 3,3\right) \\
& m=m_{A}=m_{B}=m_{C}=m_{D} \\
& m=0,058 \mathrm{~kg} \\
& r=3,3 \mathrm{~cm} \\
& \left\{\begin{array}{l}
T=\sum_{i=1}^{n} m_{i} \vec{r}_{i} \\
M
\end{array}\right. \\
& M=\sum_{i=1}^{\infty} m_{i} \\
& T=\frac{A m+B m+C m+D m}{4 m}=\frac{\operatorname{man}(A+C+D)}{4 m}=\frac{A+B+C+D}{4}= \\
& =\frac{\left(3,3-3,3+0+0,0+0+3,3 \sqrt{3}+\frac{13}{3}, 3,0+0+0+1,58,3,3\right)}{4}= \\
& \text { 3D model: } \\
& \text { https://www.geogebra.org } \\
& \text { 3d/w2788zms } \\
& =\frac{(0,1,1 \cdot \sqrt{3} \cdot 4,5,21)}{4}=(0 ; 1,1 \cdot \sqrt{3} ; 1,3)
\end{aligned}
$$

3D representation of 2 storey tennis ball tower - with centre of gravity

GeoGebra

When will the tower collapse?

- The wieght of the top ball is decomposed into 2 directions (partial force F_{p} - purple)
- By shifting the partial force into the centre of gravity of the bottom balls, composing it with the gravitational force F_{g} into Fc , and decomposing it into vertical F_{v} and horizontal Fh vectors, we get force Fh which gives torque (with arm of force $=$ radius of ball) in the drawn direction
- Between the top ball and bottom balls, there is friction force Ff perpendicular to radius, aiming in between the balls
- If the torque is bigger than friction force, the bottom balls roll out and the tower collapses
- Note: friction force between balls of each layer may be omitted

What happens if we have three layers?

3 storey tower point mass -

 GeoGebraTry to calculate the position of the centre of gravity of such system Analyze the forces
The GeoGebra model is for unitary radii

Top view from Geogebra symmetry

It's up to you: What happens if we have n layers?

- The pattern of decomposition of forces repeats
- What role does the ball on the top play?
- Is it (force-wise) much different if there is 1 or 8 layers between the bottom and top balls?
- How does number of layers affect friction (normal forces)?
- What happens to the centre of gravity as we add more layers? How does that affect the stability? Does deformation play role?

Which parameters can be investigated?

- Surface on which we build the tower different friction coeffiecients between the balls and the pad
- Distance between the balls in the layers (do they have to touch?)
- CAUTION!

When building tennis ball tower, ensure that you have a water-level so that all balls in the bottom layer have the same potential energy

- Tennis balls - new/used, different manufacturers, friction coefficients
- Number of balls in each layer if we investigate the second part of the assignment

How to determine the number of balls in a layer?

- By trying -
- Physics - the balls should interlock, so there should be enough space between the balls to fit top balls in the gaps
- Try even numbers
- How does the situation change when more than three balls per each layer and a suitable number of balls on the top layer are used?
- Try to build a pyramid - and physics starts again (analysis of forces, stability...)
- Play with it!

Do you have any questions?

Thank you for your attention!

- Literature:
- https://physicsworld.com/a/physicist-creates-remarkable-tennis-ball-pyramids-including-one-made-from-46-balls/
- https://stemfellowship.org/iyptreferences/problem6
- https://www.dailymail.co.uk/sciencetech/article -7061931/Physicist-creates-sculptures-tennis-balls-using-FRICTION-together.htmI
- https://www.gypt.org/aufgaben/06-tennis-balltower.html
- https://twu.tenniswarehouse.com/learning center/balltesting.php

